Tactile Strip Sensors on Leading Edge of Material Memory Airfoils

Aircraft designers have always tried to figure out the best compromise for the aircraft they build, trying to get maximum performance at both high and low airspeeds. Now with material memory components they will be able to do this. The camber of the leading edge can change to a nice fat round area for slow speeds when Short Take Off and Landing STOL is needed and back to a thin leading edge for the lowest coefficients of drag and optimal cruising speed once airborne. But how will the aircraft know when to do this on its own. After all if the wing has material memory based on a heat, then it might be hotter at lower altitudes and then less ambient temperature (2 degrees per thousand feet) at higher altitudes. Yet when moving much faster the friction will heat up the wing also or you could be flying in an area with temperature inversion like Los Angeles basin where the smog is kept in the valley. (UCLA when the smog clears?)

Currently robotics teams have tactile sensors so the robots will not crush the item they are picking up, they do this by measuring the pressure on the object. We should take this technology and apply it to the leading edge of aircraft wings to help us improve and enhance the performance without compromising the aircraft's abilities for STOL or higher True Air Speeds (TAS). This will save fuel and increase safety. Think on this.

  • On main